- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000001001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Wenjuan (2)
-
Lu, Chaoqun (2)
-
Raman, Erik (2)
-
Yang, Jihoon (2)
-
Yi, Bo (2)
-
Yu, Wenjuan (2)
-
Hall, Steven J (1)
-
Hall, Steven J. (1)
-
Hammel, Kenneth E (1)
-
Hammel, Kenneth E. (1)
-
Howe, Adina (1)
-
Howe, Adina Chuang (1)
-
Timokhin, Vitaliy I. (1)
-
Weintraub-Leff, Samantha R (1)
-
Weintraub-Leff, Samantha R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems.more » « less
-
Huang, Wenjuan; Yu, Wenjuan; Yi, Bo; Raman, Erik; Yang, Jihoon; Hammel, Kenneth E; Lu, Chaoqun; Howe, Adina Chuang; Weintraub-Leff, Samantha R; Hall, Steven J (, Environmental Data Initiative)We used incubations of soil and stable isotope measurements to measure lignin, litter, and SOC decomposition over an 18-month lab incubation and assessed their relationships with geochemical, microbial, N-related and climatic factors across 156 mineral soils collected from 20 National Ecological Observatory Network (NEON) sites, which span broad biophysical gradients (climate, soil, and vegetation type) across North America. The soils were collected in 2019. Lignin decomposition and biogeochemical variables were also measured in an approximately 12-month field incubation.more » « less
An official website of the United States government
